the Mertz Group
  • Home
  • People
    • Pictures
  • Research
  • Publications
  • Teaching
    • Computational Biophysics
  • Links
    • News
Link to Blake's Google Scholar profile can be found here.

27. Beasley, M., Frazee, N., Groover, S., Valentine, S.J., Mertz, B., Legleiter, J. Physicochemical Properties Altered by the Tail Group of Lipid Membranes Influence Huntingtin Aggregation and Lipid Binding. J. Phy. Chem. B 2022 126:3067–3081.
26. Frazee, N., Burns, V., Gupta, C., Mertz, B. In Silico Prediction of the Binding, Folding, Insertion, and Overall Stability of Membrane-Active Peptides. Computational Design of Membrane Proteins. Meth. Mol. Biol. 2021 2315:161-182.

25. Nguyen, K.D.Q., Sefah, E., Vigers, M., Seppälä, S., Hoover, J.P., Schonenbach, N.S., Mertz, B., O'Malley, M.A., Han, S. Homo-oligomerization of the human adenosine A2a receptor is driven by the intrinsically disordered C-terminus. eLife 2021 10:e66662.
24. Frazee, N., Mertz, B. Intramolecular interactions play key role in stabilization of pHLIP at acidic conditions. J. Comp. Chem. 2021 DOI: 10.1002/jcc.26719
23. Sefah, E., Mertz, B. Bacterial Analogs to Cholesterol Affect Dimerization of Proteorhodopsin and Modulates Preferred Dimer Interface. J. Chem. Theory Comput. 2021 17, 2502-2512.
22. Chawla, U., Perera, S., Fried, S., Eitel, A., Mertz, B., Weerasinghe, N., Pitman, M., Struts, A., Brown, M.F. Activation of the G-Protein-Coupled Receptor Rhodopsin by Water. Angew. Chem. Intl. Ed. Engl. 2021 60, 2288-2295.
21. Burns, V., Mertz, B. Using Simulation to Understand the Role of Titration on the Stability of a Peptide–Lipid Bilayer Complex. Langmuir 2020 36, 12272-12280.
20. Lee, C., Sekharan, S., Mertz, B. Theoretical Insights into the Mechanism of Wavelength Regulation in Blue-Absorbing Proteorhodopsin. J. Phys. Chem. B. 2019 123, 10631-10641.
19. Westerfield, J., Gupta, C., Scott, H., Ye, Y., Cameron, A., Mertz, B., Barrera, F.N. Ions Modulate Key Interactions between pHLIP and Lipid Membranes. Biophys. J. 2019 117, 920-929.
18. Gupta, C., Ren, Y., Mertz, B. Cooperative Non-bonded Forces Control Membrane Binding of the pH-Low Insertion Peptide pHLIP. Biophys. J. 2018. 115, 2403-2412.​
17. Faramarzi, S., Feng, J., Mertz, B. Allosteric effects of the proton donor on the microbial proton pump, proteorhodopsin. Biophys. J. 2018 115, 1240-1250.
16. Gupta, C., Mertz, B. Protonation enhances inherent helix-forming propensity of pHLIP. ACS Omega 2017 2, 8536-8542.
15. Faramarzi, S., Bonnett, B., Scaggs, C.A., Hoffmaster, A., Grodi, D., Harvey, E., Mertz, B. Molecular dynamics simulations as a tool for accurate determination of surfactant micelle properties. Langmuir 2017 33, 9934-9943.​
14. Cai, M., Marelli, U.K. Mertz, B., Beck, J.G., Opperer, F., Rechenmacher, F., Kessler, H., Hruby, V.J. Structural Insights into Selective Ligand-Receptor Interactions Leading to Receptor Inactivation Utilizing Selective Melanocortin 3 Receptor Antagonists. Biochemistry  2017 56, 4201-4209. 
13​. Prince, N., Popp, B., Mertz, B., Gupta, C., Boyd, J. A Novel Approach to Battlefield Wound Assessment and Treatment for Forward Surgical Teams. HDIAC Journal 2017 4, 40-45.
12. Lee, C., Mertz, B. Theoretical Evidence for Multiple Charge Transfer Pathways in Bacteriorhodopsin. J. Chem. Theory Comput. 2016 12, 1639-1646.
11. Feng, J., Mertz, B. Proteorhodopsin activation is modulated by dynamic changes in internal hydration. Biochemistry  2015 54, 7132-7141.
10. Mertz, B., Feng, J., Corcoran, C., Neeley, B. Explaining the mobility of retinal in activated rhodopsin and opsin. Photochem. Photobiol. Sci. 2015, 14, 1952-1964.
9. Feng, J; Mertz. B. Novel Phosphotidylinositol 4,5-bisphosphate Binding Sites on Focal Adhesion Kinase. PLoS ONE 2015, 10, e0132833.
8. Feng, J.; Brown, M.F.; Mertz, B. Retinal Flip in Rhodopsin Activation? Biophys. J. 2015, 108, 2767-2770.
7. Leioatts, N.; Mertz, B.; Martínez-Mayorga, K.; Romo, T.D.; Pitman, M.C.; Feller, S.E.; Grossfield, A.; Brown, M.F. Retinal ligand mobility explains internal hydration and reconciles active rhodopsin structures. Biochemistry 2014, 53, 376-385.
6. Mertz, B; Struts, A.V.; Feller, S.E.; Brown, M.F. Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. Biochim. Biophys. Acta 2012, 1818, 241-251.
5. Mertz, B.; Lu, M.; Brown, M. F.; Feller, S. E. Steric and electronic influences on the torsional energy landscape of retinal. Biophys. J. 2011, 101, L17-L19.
4. Mertz, B.; Gu, X.; Reilly, P. J. Analysis of functional divergence within two structurally related glycoside hydrolase families. Biopolymers 2009 91, 478-495.
3. Fushinobu, S.; Mertz, B.; Hill, A. D.; Hidaka, M.; Kitaoka, M.; Reilly, P. J. Computational analyses of the conformational itinerary along the reaction pathway of GH94 cellobiose phosphorylase. Carb. Res. 2008 343, 1023-1033.
2. Mertz, B.; Hill, A. D.; Mulakala, C.; Reilly, P. J. Automated docking to explore subsite binding by glycoside hydrolase family 6 cellobiohydrolaess and endoglucanases. Biopolymers 2006 87, 249-260.
1. Mertz, B.; Kuczenski, R. S.; Larsen, R. T.; Hill, A. D.; Reilly, P. J. Phylogenetic analysis of family 6 glycoside hydrolases. Biopolymers 2005 79, 197-206.

Chemistry Research Laboratory Room 285
The C. Eugene Bennett Department of Chemistry
West Virginia University
Morgantown, WV 26506

Powered by Create your own unique website with customizable templates.